

CH32F203 Datasheet

V2.4

Overview

CH32F203 series is an industrial-grade enhanced small-and-medium capacity general-purpose microcontroller based on 32-bit ARM[®] CortexTM-M3 core, which supports up to 144MHz system main frequency, high performance and low-power consumption. CH32F203 series integrates dual USB interface, supports USB Host and USB Device function, with a group of CAN interface (2.0B active), 2 groups of op-amp comparators, 4 groups of USART, 2 I²C, 12-bit ADC, 10-way Touchkey, multiple groups of timers and other rich peripheral resources.

Features

- Core:
 - 32-bit ARM Cortex-M3 core
 - Single-cycle multiplication, hardware division
 - Interruption technology, Fault handling mechanism
 - System main frequency 144MHz
- Memory:
 - Available with up to 20KB volatile data storage area SRAM
 - Available with 224KB program memory CodeFlash (zero-wait application area +
 - non-zero-wait data area)
 - 28KB BootLoader
 - 128B non-volatile system configuration memory
 - 128B user-defined memory
- Power management and low-power consumption:
 - System power supply $V_{\text{DD}}\text{:}~3.3V$
 - Independent power supply for GPIO unit $V_{\rm I/O}{:}\ 3.3V$
 - Low-power mode: Sleep, Stop, Standby
 - V_{BAT} independently powers RTC and backup register
- Clock & Reset
 - Built-in factory-trimmed 8MHz RC oscillator
 - Built-in 40 KHz RC oscillator
 - Built-in PLL, optional CPU clock up to 144MHz
 - Embedded PLL with optional CPU clock up

to 144MHz

- External support for 3~25MHz high-speed oscillator
- External support for 32.768KHz low-speed oscillator
- Power up/down reset, programmable voltage monitor
- Real-time clock (RTC): 32-bit independent RTC timer
- 1 groups of 8-channel general-purpose DMA controllers
 - 8 channels, support ring buffer
 - Support TIMx/ADC /USART/I²C/SPI
- 2 groups of OPAs and comparators: connected with ADC and TIMx
- 2 group of 12-bit ADC
 - Analog input range: $V_{SSA} {\sim} V_{DDA}$
 - 10 external signals + 2 internal signals
 - On-chip temperature sensor
 - Dual ADC conversion mode
- 10-channels Touch-Key detection Timers
- Multiple Timers
 - 1 16-bit advanced-control timers, with dead zone control and emergency brake; can offer PWM complementary output for motor control
 - 3 16-bit general-purpose timers, provide input capture/output comparison/PWM/pulse counting/incremental encoder input
 - 2 watchdog timers (independent watchdog and window watchdog)
 - SysTick: 24-bit self-subtracting counter

- Communication interfaces:
 - 4 USART interfaces (including 5 UARTs)
 - 2 I²C interfaces (support SMBus/PMBus)
 - 2 SPI interfaces (SPI2, SPI3 for I²S2, I²S3)
 - USB2.0 full-speed device interface
 - (full-speed and low-speed)
 - USB2.0 full-speed host/device interface

- 1 CAN interfaces (2.0B active)

- Fast GPIO port
 - 37 I/O ports, with 16 external interrupts
- Security features: CRC unit, 96-bit unique ID
- Debug mode: serial 2-wire debug interface
- Package: LQFP or QFN

Chapter 1 Series product description

The CH32F series are industrial-grade general-purpose enhanced MCUs based on the high performance ARM[®] CortexTM-M3 32-bit RISC core, which are divided into general-purpose, connectivity, wireless and other categories according to functional resources. They extend each other with differences in package category, peripheral resources and number, number of pins, and device characteristics, but remain compatible with each other in terms of software and functions, and hardware pin configuration, providing users with freedom and convenience for product iteration and rapid application in product development.

For the features of this series of products, please refer to the datasheet.

For the peripheral function description, usage and register configuration, please refer to "CH32FV2_V3RM".

The datasheet and reference manuals can be downloaded on the official website of WCH:http://www.wch.cn/

For information about the CortexTM-M3 core, please refer to "Cortex-M3 Technical Reference Manual", available for download from ARM website.

This manual is for CH32F203 series datasheet. Please refer to "CH32F208DS0" for F208 series and "CH32V207DS0" for F205, F207, and F203 (high capacity) series.

	1 2		r general-purpose e (F203) 256K Flash 64K SRAM	Connectivity device (F205) 128K Flash 32K SRAM	Interconnectivity device (F207) 256K Flash 64K SRAM 2*ADC(TKey)	Wireless device (F208) 128K Flash 64K SRAM
2*GPTM3*C2*USART4*USPI2*SI²C2*FUSBDUSEUSBFSUSECANCARTCRTC2*WDG2*V	DTM GPTM USART SPI I ² C SBD SBFS AN CC WDG	2*ADC(TKey) 2*DAC ADTM 3*GPTM 3*USART 2*SPI 2*I ² C USBD CAN RTC 2*WDG	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI(2*I ² S) 2*I ² C USBD CAN RTC 2*WDG 4*OPA RNG SDIO FSMC	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 5*USART/UART 3*SPI(2*I ² S) 2*I ² C OTG_FS USBHS(+PHY) 2*CAN RTC 2*WDG 4*OPA RNG SDIO	2*ADC(TKey) 2*DAC 4*ADTM 4*GPTM 2*BCTM 8*USART/UART 3*SPI(2*I ² S) 2*I ² C OTG_FS USBHS(+PHY) 2*CAN RTC 2*WDG 4*OPA RNG SDIO FSMC DVP ETH-1000MAC 10M-PHY	ADC(TKey) ADTM 3*GPTM GPTM(32) 4*USART/UART 2*SPI 2*I ² C USBD USBFS CAN RTC 2*WDG 2*OPA ETH-10M(+PHY) BLE5.3

Table 1-1 Series overview

Note: The number of peripherals or functions of some products in the same category may be limited by the package, please confirm the product package when selecting.

Abbreviations:						
ADTM: Advanced-control Timer	RNG: Random Number Generator					
GPTM: General-purpose Timer	USBD: U	niversal Seria	l Bus Ful	l-speed	Device	
GPTM (32): 32-bit General-purpose Timer	USBFS:	Universal	Serial	Bus	Full-speed	
BCTM: Basic Timer	Host/Devi	ice				
TKey: Touch key	USBHS:	Universal	Serial	Bus	High-speed	
OPA: Operational Amplifier/Comparator	Host/Device					

Chapter 2 Specification

The CH32F203 series uses the high-performance ARM[®] CortexTM-M3 32-bit RISC core with a maximum operating frequency of 144MHz, built-in high-speed memory, and multiple buses working synchronously in the system structure, providing a rich set of peripheral functions and enhanced I/O ports. This series of products has 2 built-in 12-bit ADC modules, multiple timers, multi-channel touch key capacitance detection (TKey), etc. It also contains standard and dedicated communication interfaces: I²C, SPI, USART, CAN controller, USB2.0 full-speed host/device controller, USB2.0 full-speed device controller, etc.

The rated working voltage of the product is 3.3V, and the working temperature range is $-40^{\circ}C \sim 85^{\circ}C$ in industrial grade. It supports several power-saving operating modes to meet the product's low-power application requirements. Various models in the series are different in terms of resource allocation, number of peripherals, peripheral functions, etc., and can be selected as needed.

2.1 Model comparison

	Produ		CH32F20	3		
Resource Differ	rences	K8	C6	C8		
Pin	n count	32	48	48		
Flash	(bytes) (1)		64K	32K	64K	
SRA	M (bytes)		20K	10K	20K	
GPIO	port count		26	3	37	
GPIO p	ower suppl	ly	Sh	ared with	V _{DD}	
	Advance	d-control	1	1	1	
	(16-	bit)	1	1	1	
Timer	General-	purpose	3	2	3	
Timer	(16-	bit)	3	2	5	
	Wate	hdog	2 (W	WDG + IV	WDG)	
	SysTick	(24-bit)		support		
	RTC			support		
ADC/TKey (ch	nannel@ ur	10@2	10@2	10@2		
	OPA		2	2	2	
	USART	/UART	2	2	4	
	SI	PI	1	1	2	
Communication	I^2	С	1	1	2	
interfaces	CA	N	1	1	1	
	USB(FS)	USBD	1	1	1	
	030(13)	USBHD	-	1	1	
CPU c	clock speed	Max: 144MHz				
Rate	d voltage			3.3V		
Onorstin	a tannarat	Industrial-grade:				
Operating	g temperati	ure	-	40°C~85°	С	

Table 2-1 CH32F203 small-and-medium capacity general-purpose product resource allocation

Package	LQFP32	LQFP48	LQFP48 QFN48

Note: 1. Flash bytes represent zero-wait run area R_{0WAIT} , non-zero-wait area is (224K- R_{0WAIT}).

2.2 System architecture

The microcontroller is designed with ARM[®] CortexTM-M3 as the design core, the architecture of the core, arbitration unit, DMA module, SRAM memory and other parts of the interaction through multiple bus groups. The design integrates a general-purpose DMA controller to reduce the CPU burden and improve access efficiency, and applies a multi-level clock management mechanism to reduce the power consumption of peripherals, as well as a data protection mechanism and automatic clock switching protection to increase system stability. The following figure shows the overall internal architecture of the series.

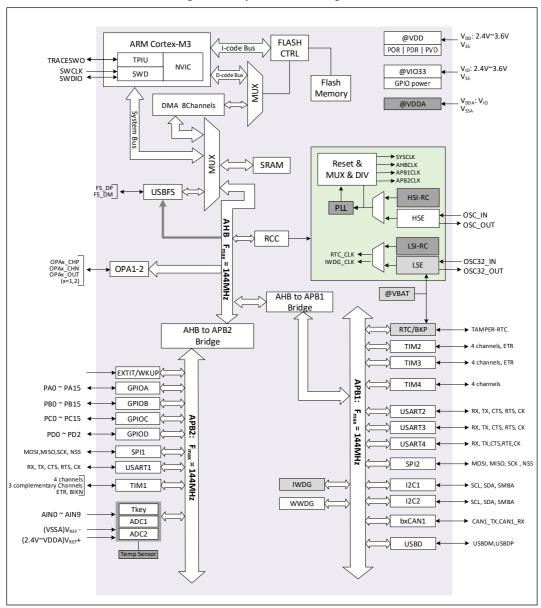
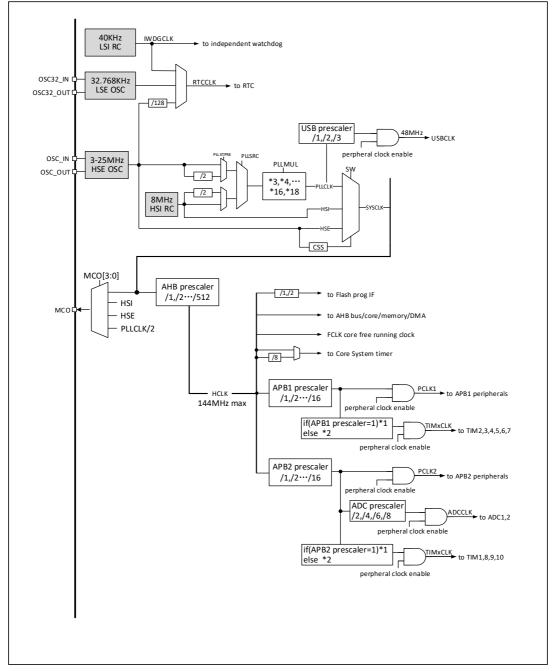


Figure 2-1 System block diagram


2.3 Memory map

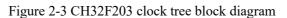

		1.8	-			
				/	/ 0x5005 0400	Reserved
				[0x5005 0000	Reserved
					0x5004 0000	USBFS
					0x5000 0000	Descend
					0x4002 8000	Reserved
					0x4002 8000 0x4002 6000	
					0x4002 0000 0x4002 4000	Reserved
					0x4002 4000 0x4002 3C00	
					0x4002 3000 0x4002 3800	EXTEND
					0x4002 3800	Reserved
					0x4002 3400 0x4002 3000	CRC
					0x4002 3000	Reserved
					0x4002 2400 0x4002 2000	Flash Interface
					0x4002 1400	Reserved
					0x4002 1000	RCC
					0x4002 0800	Reserved
					0x4002 0000	
					0x4002 0000	DMA
					0x4001 8400	
					0x4001 8400 0x4001 8000	Reserved
					0x4001 8000 0x4001 5400	
					0x4001 5400 0x4001 5000	
					0x4001 3000 0x4001 4C00	Reserved
					0x4001 4C00 0x4001 3C00	
					0x4001 3C00 0x4001 3800	USART1
					0x4001 3800 0x4001 3400	Reserved
					0x4001 3000	SPI1
					0x4001 3000 0x4001 2C00	TIM1
					0x4001 2000	ADC2/TouchKey
					0x4001 2800	ADC1/TouchKey
					0x4001 1C00	Reserved
					0x4001 1800	Port D
					0x4001 1400	Port C
					0x4001 1000	Port B
		I		1	0x4001 0C00	Port A
		0xFFFF FFFFF	Reserved		0x4001 0800	EXTI
			Reserved		0x4001 0400	AFIO
		0xE010 0000	Core Private		0x4001 0000	
		0xE000 0000	Peripherals		0x4000 7800	Reserved
					0x4000 7400	PWR
			Reserved		0x4000 7000	ВКР
					0x4000 6C00	Reserved
		0xC000 0000			0x4000 6800	bxCAN1
					0x4000 6400	share 512B SRAM
0x1FFF FFFF	Davar		Reserved		0x4000 6000	USBD
	Reserved				0x4000 5C00	12C2
0x1FFF F880	Option Bytes	0xA000 0000			0x4000 5800	12C1
0x1FFF F800	Vendor Bytes				0x4000 5400	Reserved
0x1FFF F700			Reserved		0x4000 5000	USART4
0x1FFF F000	Reserved				0x4000 4C00	USART3
5.2		0x7000 0000			0x4000 4800	USART2
	System FLASH				0x4000 4400	
	(ВООТ_28КВ)		Reserved		0x4000 4000	Reserved
0x1FFF 8000					0x4000 3C00	SPI2
		0x6000 0000			0x4000 3800	Reserved
			Posserved		0x4000 3400	IWDG
	Reserved		Reserved		0x4000 3000	WWDG
			- · · ·	ſ	0x4000 2C00	RTC
Ļ		0x4000 0000	Peripherals		0x4000 2800	
	Code FLASH	0,4000 0000				
	224KB max		Reserved			
	Includes 0 wait and non-0	0x2000 5000		\		Reserved
	waiting areas	0x2000 0000	SRAM (20KBmax)			neserveu
0x0800 0000		UX2000 0000				
	Aliased to Flash or system memory		FLASH			
	depending on		FLAGE		0x4000 0C00	TIM4
	BOOT pins				0x4000 0800	TIM4
0,0000,0000						
0x0000 0000		0x0000 0000	4G linear address	· \	0x4000 0400	TIM2

Figure 2-2 Memory address map

2.4 Clock tree

Four groups of clock sources are introduced into the system: internal high-frequency RC oscillator (HSI), internal low-frequency RC oscillator (LSI), external high-frequency oscillator (HSE), and external low-frequency oscillator (LSE). Among them, the low-frequency clock source provides the clock reference for RTC and independent watchdog. The high-frequency clock source is directly or indirectly multiplied by the PLL and output as the system clock (SYSCLK). The system clock is then provided by each prescaler to provide the AHB domain, APB1 domain, APB2 domain peripheral control clock and sampling or output clock. Some modules need to be directly provided by the PLL clock.

Note: When using USB, the CPU clock speed must be 48MHz or 96MHz or 144MHz. When the system wakes up from Stop mode or Standby mode, the system will automatically select HSI as the system clock frequency.

2.5 Functional description

2.5.1 ARM Cortex-M3 Core

ARM[®] CortexTM-M3 is a 32-bit embedded processor that provides the low-cost platform, reduced pin count, and reduced system power needed to implement an MCU, as well as superior computational performance and advanced interrupt system response. Its additional code efficiency leverages the high performance of the ARM core on the storage space of typical 8-bit and 16-bit systems.

- Harvard architecture, add branch prediction function, improve pipeline processor performance play
- Tail-Chaining is a hardware-based technology that improves efficiency
- Core low-power 3 modes, more effective power control
- Advanced Fault handling mechanism, debugging solutions, etc.

The CH32F2x series controllers have a built-in ARM core and are therefore compatible with most ARM tools and software.

2.5.2 On-chip memory and boot mode

Built-in maximum 20K bytes SRAM area for data storage, data loss after power down. The specific capacity should correspond to the chip model.

The built-in program flash memory storage area (Code FLASH) of up to 224K bytes is used for user's application and constant data storage. This includes a zero-wait program run area and a non-zero-wait area. The specific size of the area corresponds to the chip model.

Built-in 28K bytes of system storage (System FLASH) for system bootloader storage (factory-cured bootloader)

128 bytes are used for system non-volatile configuration word storage, and 128 bytes are used for user selection word storage.

At startup, one of three boot modes can be selected through the boot pins (BOOT0 and BOOT1):

- Boot from program flash
- Boot from system memory
- Boot from internal SRAM

The bootloader is stored in the system memory, and the contents of the program Flash memory storage can be reprogrammed through the USART1 and USB interface.

2.5.3 Power supply scheme

- $V_{DD} = 2.4 \sim 3.6$ V: Power supply for some I/O pins and internal voltage regulator.
- $V_{IO} = 2.4 \sim 3.6$ V: It supplies power to most of the I/O pins and the Ethernet module, which determines the pin output high voltage amplitude. Normal work during operation, the V_{I/O} voltage cannot be higher than the V_{DD} voltage.
- $V_{DDA} = 2.4 \sim 3.6 V$: It supplies power to the analog part of the high-frequency RC oscillator, ADC, temperature sensor, DAC and PLL. The V_{DDA} voltage must be the same as the $V_{I/O}$ voltage (If V_{DD} is powered down and $V_{I/O}$ is powered on, Then V_{DDA} must be powered on and consistent with $V_{I/O}$). When using ADC, V_{DDA} must not be less than 2.4V.
- $V_{BAT} = 1.8 \sim 3.6V$: When V_{DD} is turned off, (through the internal power switch) independently powers the RTC, external low-frequency oscillator and backup registers. (Pay attention to V_{BAT} power supply)

2.5.4 Power supply monitor

This product integrates a power-on reset (POR)/power-down reset (PDR) circuit, which is always in working

condition to ensure that the system is in supply. It works when the power exceeds 2.4V; when V_{DD} is lower than the set threshold ($V_{POR/PDR}$), the device is placed in the reset state without using an external reset circuit.

In addition, the system is equipped with a programmable voltage monitor (PVD), which needs to be turned on by software to compare the voltage of V_{DD} power supply with the set threshold V_{PVD} . Turn on the corresponding edge interrupt of PVD, and you can receive interrupt notification when V_{DD} drops to the PVD threshold or rises to the PVD threshold. Refer to Chapter 4 for the values of $V_{POR/PDR}$ and V_{PVD} .

2.5.5 Voltage regulator

After reset, the regulator is automatically turned on, and there are 3 operation modes according to the application mode.

- ON mode: Normal operation, providing stable core power.
- Low-power mode: When the CPU enters Stop mode, the regulator can be selected to run with low-power consumption.
- OFF mode: When the CPU enters Standby mode, it automatically switches the regulator to this mode, the voltage regulator output is in high impedance, and the core power.

The voltage regulator is always ON after reset. It is OFF in Standby mode, and the regulator output is in high impedance.

2.5.6 Low-power mode

The system supports 3 low-power modes, which can be selected for low-power consumption, short startup time and multiple wake-up events to achieve the best balance.

• Sleep mode

In Sleep mode, only the CPU clock is stopped, but all peripheral clocks are powered normally and the peripherals are in a working state. This mode is the shallowest low-power mode, but it is the fastest mode to wake up the system.

Exit condition: any interrupt or wake-up event.

• Stop mode

In this mode, the FLASH enters low-power mode, and the PLL, HSI RC oscillator and HSE crystal oscillator are turned off. In the case of keeping the contents of SRAM and registers not lost, the Stop mode can achieve the lowest power consumption.

Exit conditions: any external interrupt/event (EXTI signal), external reset signal on NRST, IWDG reset, among which EXTI signal includes one of 16 external I/O ports, PVD output, RTC alarm clock, Ethernet wake-up signal or USB wake-up signal.

• Standby mode

In this mode, the main LDO of the system is turned off, the low-power LDO supplies power to the wake-up circuit, all other digital circuits are powered off, and the FLASH is powered off. The system wakes up from Standby mode will generate a reset, and SBF (PWR_CSR) will be set at the same time. After waking up, check the SBF status to know the low-power mode before waking up. SBF is cleared by the CSBF (PWR_CR) bit. In the Standby mode, the contents of 32KB of SRAM can be kept (depending on the planning and configuration before going to bed), and the contents of the backup registers are kept.

Exit conditions: any external interrupt/event (EXTI signal), external reset signal on NRST, IWDG reset, a rising edge on the WKUP pin, where EXTI signal includes one of 16 external I/O ports, RTC alarm clock or USB Wake-up signal.

2.5.7 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit uses a fixed polynomial generator to generate a CRC code from a 32-bit data word. In many applications, CRC-based technology is used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC 60335-1 standard, a means of detecting flash errors is provided. The CRC calculation unit can be used to calculate the signature of the software in real time and compare it with the signature generated when the software is linked and generated.

2.5.8 Nested vector interrupt controller (NVIC)

The system product has a built-in nested vector interrupt controller (NVIC), which manages 88 maskable interrupt channels and 16 core interrupt channels. And 16 priority levels can be configured.

- Tightly coupled NVIC enables low latency interrupt response processing
- Vectorized interrupt design implements vector entry address directly into the core
- 16 levels of nesting, dynamic modification
- Allow early processing of interrupts
- Support late arrival of higher priority interrupt responses
- Support for break tail link function
- Provide first response to unmaskable interruptions
- Automatic stacking and recovery on interrupt entry and exit, no additional instruction overhead

The module provides flexible interrupt management capabilities with minimal interrupt latency.

2.5.9 External interrupt/event controller (EXTI)

The external interrupt/event controller contains a total of 19 edge detectors for generating interrupt/event requests. Each interrupt line can independently configure its trigger event (rising edge or falling edge or both edges), and can be individually masked; the suspend register maintains all interrupt request states. EXTI can detect that the pulse width is smaller than the clock period of the internal APB2. Up to 37 general-purpose I/O ports can be connected to 16 external interrupt lines.

2.5.10 General-purpose DMA controller

The system has built-in 1 group of general-purpose DMA controllers, manages 8 channels in total, and flexibly handles high-speed data transmission from memory to memory, peripherals to memory, and memory to peripherals, and supports ring buffer mode. Each channel has a dedicated hardware DMA request logic to support one or more peripherals' access requests to the memory. The access priority, transfer length, source address and destination address of the transfer can be configured.

The main peripherals used by DMA include: general-purpose/advanced-control/basic timers TIMx, ADC, USART, I²C and SPI.

Note: DMA and CPU access the system SRAM after arbitration by the arbiter.

2.5.11 Clock and Boot

The system clock source HSI is turned on by default. After the clock is not configured or reset, the internal 8MHz RC oscillator is used as the default CPU clock, and then an external 3~25MHz clock or PLL clock can be additionally selected. When the clock security mode is turned on, if the HSE is used as the system clock (directly or indirectly), the system clock will automatically switch to the internal RC oscillator when the external clock is detected to be invalid, and the HSE and PLL will be automatically turned off at the same time; in low-power consumption mode, the system will automatically switch to the internal RC oscillator

after waking up. If the clock interrupt is enabled, the software can receive the corresponding interrupt.

Multiple prescalers are used to configure the frequency of AHB. The high-speed APB (APB2) and low-speed APB (APB1) regions provide peripheral clocks with a maximum frequency of 144MHz. Refer to the clock tree block diagram in Figure 2-3.

2.5.12 Real time clock (RTC) and backup registers

The RTC and the backup register are in the backup power supply area inside the system. When V_{DD} is valid, it is powered by V_{DD} , and when V_{DD} is invalid, the internal power is automatically switched to the V_{BAT} pin.

The RTC real-time clock is a set of 32-bit programmable counters, and the time base supports 20-bit prescaler for measurement in a longer period of time. The clock reference source is a high-speed external clock divided by 128 (HSE/128), external crystal low-frequency oscillator (LSE) or internal low-power RC oscillator (LSI). The LSE also has a backup power supply area, so when the LSE is selected as the RTC time base, the RTC setting and time can remain unchanged after the system resets or wakes up from Standby mode.

The backup register contains up to 42 16-bit registers, which can be used to store 84 bytes of user application data. This data can continue to be maintained after wake-up from Standby, or system Reset or power Reset. When the intrusion detection function is turned on, once the intrusion detection signal is valid, all contents in the backup register will be cleared.

2.5.13 Analog-to-digital converter (ADC) and touch key capacitance detection (TKey)

The product is embedded with 2 12-bit analog/digital converters (ADC), sharing up to 10 external channels and 2 internal channels for sampling. The programmable channel sampling time can realize single, continuous, scanning or discontinuous conversion. And supports dual ADC conversion mode. The analog watchdog function is provided to allow very precise monitoring of one or more selected channels for monitoring the signal voltage of the channel. It supports external event-triggered conversion, the trigger source includes the internal signal and external pin of the on-chip timer; it also supports the use of DMA operations.

ADC internal channel sampling includes 1 channel of built-in temperature sensor sampling and 1 channel of internal reference power sampling. The temperature sensor generates a voltage that varies linearly with temperature. The temperature sensor is internally connected to the IN16 input channel, which is used to convert the output of the sensor to a digital value.

The capacitance touch key detection unit provides up to 10 detection channels, multiplexing the external channels of the ADC module. The detection result is converted and output by the ADC module, and the state of the touch key is recognized by the user software.

2.5.14 Timer and watchdog

The timers in the system include advanced-control timers, general-purpose timers, watchdog timers, and SysTick timers. The number of timers included in different products in the series is different, please refer to Table 2-2 for details.

Tim	er	Resolution	Count Type	Time Base	DMA	Function	
Advanced- control timer	TIM1	16 bits	Up Down Up/down	APB2 time domain 16-bit divider	Supported	PWM complementary output, single pulse output Input capture Output compare Timer count	
General- purpose timer	TIM2 TIM3 TIM4	16 bits	Up Down Up/down	APB1 time domain 16-bit divider APB1 time	Support	Input capture Output compare Timer count	
Window w	vatchdog	7 bits	Down	domain 4 types of frequency division	Not support	Timing Reset the system (normal work)	
Indeper watch		12 bits	APB1 time domainNotDown7 types of frequencysupportdivision		Not support	Timing Reset the system (normal work + low-power work)	
SysTick	timer	24 bits	Down	SYSCLK or SYSCLK/8	Not support	Timing	

Table 2-2 Timer comparison

• Advanced-control timer

The advanced-control timer is a 16-bit auto-loading up/downcounter with a 16-bit programmable prescaler. In addition to the complete general-purpose timer function, it can be regarded as a three-phase PWM generator distributed to 6 channels, with a complementary PWM output function with dead zone insertion, allowing the timer to be updated after a specified number of counter cycles to repeat counting cycle, braking function, etc. Many functions of the advanced-control timer are the same as the general timer, and the internal structure is also the same. Therefore, the advanced-control timer can cooperate with other TIM timers through the timer link function to provide synchronization or event link functions.

• General-purpose timer

The general-purpose timer is a 16-bit auto-loading up/downcounter with a programmable 16-bit prescaler and 4 independent channels. Each channel supports input capture, output comparison, and PWM generation and single pulse mode output. It can also work with advanced-control timers through the timer link function to provide synchronization or event link functions. In Debug mode, the counter can be frozen while the PWM outputs are disabled, thereby cutting off the switches controlled by these outputs. Any general-purpose timer can be used to generate PWM output. Each timer has an independent DMA request mechanism. These timers can also process signals from incremental encoders, as well as digital outputs from 1 to 3 Hall sensors.

• Independent Watchdog

The independent watchdog is a configurable 12-bit downcounter that supports 7 frequency division factors. The clock is provided by an internal independent 40 kHz RC oscillator (LSI); because the LSI is independent

of the main clock, it can run in Stop and Standby modes. IWDG is outside the main program and can work completely independently. Therefore, it is used to reset the entire system when a problem occurs, or as a free timer to provide timeout management for the application. It can be configured as software or hardware to start the watchdog through the option byte. In Debug mode, the counter can be frozen.

• Window Watchdog

The window watchdog is a 7-bit downcounter and can be set to free-running. It can be used to reset the entire system when a problem occurs. It is driven by the main clock and has an early warning interrupt function; in Debug mode, the counter can be frozen.

• SysTick timer

This is a 24-bit downcounter that comes with the core controller. It is used to generate SYSTICK anomalies (exception number: 15). It can be dedicated to the real-time operating system (RTOS) to provide a "heartbeat" tick for the system, or it can be used as a standard 24-bit counter. It has an automatic reload function and a programmable clock source.

2.5.15 Communication interface

2.5.15.1 Universal Synchronous/Asynchronous Receiver Transmitter (USART)

The product provides 4 groups of Universal Synchronous/Asynchronous Receiver Transmitters. It supports full-duplex asynchronous communication, synchronous one-way communication and half-duplex single-wire communication. It also supports LIN (Local Interconnect Network), compatible with ISO7816 smart card protocol and IrDA SIR ENDEC transmission codec specification, and modem (CTS/RTS hardware flow control) operation. It also allows multi-processor communication. It uses a fractional baud rate generator system and supports DMA operation continuous communication.

2.5.15.2 Serial Peripheral Interface (SPI)

Up to 2 groups of serial peripherals interface (SPI) provide master or slave operation, dynamic switching. Support multi-master mode, full-duplex or half-duplex synchronous transmission, support basic SD card and MMC mode. Programmable clock polarity and phase, data bit width provides 8 or 16-bit selection, hardware CRC generation/check for reliable communication, and continuous communication support for DMA operation.

2.5.15.3 I2C bus

Up to 2 I²C bus interfaces can work in multi-master mode or Slave mode, perform all I²C Bus specific timing, protocol, arbitration, etc. It supports both standard and fast speed, and is compatible with SMBus2.0.

The I²C interface provides 7-bit or 10-bit addressing, and supports dual slave addressing in 7-bit Slave mode. It integrates built-in hardware CRC generator/checker. It also supports DMA operation and supports SMBus bus version 2.0/PMBus bus.

2.5.15.4 Controller Area Network (CAN)

The CAN interface is compatible with specifications 2.0A and 2.0B (active), the baud rate is up to 1Mbits/s, and it supports time-triggered communication functions. It can receive and send standard frames with 11-bit identifiers, as well as extended frames with 29-bit identifiers. It has 3 sending mailboxes and 2 3-level deep receiving FIFOs.

With 1 set of CAN controller products, there are only 14 configurable filters, and share a dedicated

512-byte SRAM memory with the USBD module for data transmission and reception. When USBD and CAN are used at the same time, in order to prevent access to SRAM conflicts, USBD can only use the lower 384 bytes.

2.5.15.5 Universal Serial Bus device (USBD)

The product is embedded with a USB2.0 full-speed controller, which complies with the USB2.0 Fullspeed standard. USBD provides 16 configurable USB device endpoints, supports low-speed devices and full-speed devices, supports control/batch/synchronization/interrupt transmission, double buffer mechanism, USB suspend/resume operations, and has standby/wake-up functions. The USB dedicated 48MHz clock is directly generated by the internal main PLL frequency division.

2.5.15.6 Universal Serial Bus USB2.0 full-speed Host/Device controller (USBFS)

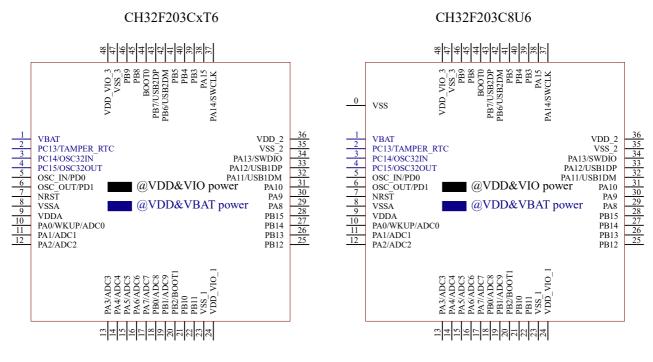
The USB2.0 full-speed host controller and device controller (USBFS) follow the USB2.0 Fullspeed standard. It provides 16 configurable USB device endpoints and a set of host endpoints. Support control/batch/synchronization/interrupt transmission, double buffer mechanism, USB bus suspend/resume operation, and provide standby/wake-up functions. The 48MHz clock dedicated to the USBFS module is directly generated by the internal main PLL frequency division (the PLL must be 144MHz or 96MHz or 48MHz).

2.5.16 General-purpose input and output (GPIO)

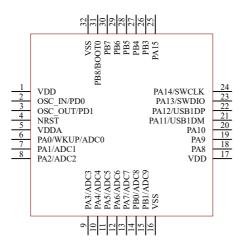
The system provides 4 groups of GPIO ports with a total of 37 GPIO pins. Each pin can be configured by software as output (push-pull or open-drain), input (with or without pull-up or pull-down) or multiplexed peripheral function port. Most GPIO pins are shared with digital or analog multiplexed peripherals. Except for ports with analog input functions, all GPIO pins have high current passing capabilities. A locking mechanism is provided to freeze the I/O configuration to avoid accidental writing to the I/O register.

Most of the I/O pins in the system are provided by $V_{\nu o}$. Changing the $V_{\nu o}$ power supply will change the high value of the I/O pin output level to adapt to the external communication interface level. Please refer to the pin description for specific pins.

2.5.17 Operational amplifier/comparator (OPA)


The product has built-in 2 groups of operational amplifiers/comparators, and the internal selection is linked to the ADC and TIMx peripherals. Its input and output can be selected by changing the configuration to select multiple channels. It supports to amplify the external analog small signal and send it to the ADC to realize the small signal ADC conversion. It can also complete the signal comparator function. The comparison result is output by GPIO or directly connected to the input channel of TIMx.

2.5.18 Serial 2-wire Debug Interface (SWD)


The ARM core comes with the SW-DP interface, which is a serial 2-wire debug interface. It includes SWDIO and SWCLK pins. The default debug interface pin function is turned on after system power on or reset.

Chapter 3 Pinouts and pin definition

3.1 Small-and-medium capacity general-purpose F203 pin arrangement

CH32F203K8T6

3.2 Pin description

Table 3-1 CH32F203x6/x8 pin definitions

Note: The pin function descriptions in the table below are for all functions and do not relate to specific model products. Peripheral resources may vary between models, so please check the availability of this function according to the product model resource table before viewing.

Pin	No.					5	
LQFP32	LQFP48/QFN48	Pin name	Pin type (1)	I/O level	Main function (after reset)	Default alternate function	Remapping function
-	0	V _{SS}	Р	-	V _{SS}		
-	1	V _{BAT}	Р	-	V_{BAT}		
-	2	PC13- TAMPER-RT C ⁽²⁾	I/O	-	PC13 ⁽³⁾	TAMPER-RTC	
-	3	PC14- OSC32_IN ⁽²⁾	I/O/A	-	PC14 ⁽³⁾	OSC32_IN	
-	4	PC15- OSC32_OUT ⁽²	I/O/A	-	PC15 ⁽³⁾	OSC32_OUT	
2	5	OSC_IN	I/A	-	OSC_IN		PD0
3	6	OSC_OUT	O/A	-	OSC_OUT		PD1
4	7	NRST	Ι	-	NRST		
-	8	V _{SSA}	Р	-	V_{SSA}		
5	9	V _{DDA}	Р	-	V _{DDA}		
6	10	PA0-WKUP	I/O/A	-	PA0	WKUP USART2_CTS ADC_IN0 TIM2_CH1 TIM2_ETR	TIM2_CH1_ETR_2
7	11	PA1	I/O/A	-	PA1	USART2_RTS ADC_IN1 TIM2_CH2	TIM2_CH2_2
8	12	PA2	I/O/A	-	PA2	USART2_TX ADC_IN2 TIM2_CH3 OPA2_OUT0	TIM2_CH3_1
9	13	PA3	I/O/A	-	PA3	USART2_RX ADC_IN3 TIM2_CH4 OPA1_OUT0	TIM2_CH4_1

Pin	No.						
LQFP32	LQFP48/QFN48	Pin name	Pin type (1)	I/O level	Main function (after reset)	Default alternate function	Remapping function
						SPI1_NSS	
10	14	PA4	I/O/A	-	PA4	USART2_CK	
10	17	1717	1.0/11	_	1717	ADC_IN4	
						OPA2_OUT1	
						SPI1_SCK	
11	15	PA5	I/O/A	-	PA5	ADC_IN5	USART4_TX_1
						OPA2_CH1N	
						SPI1_MISO	
12	16	PA6	I/O/A	-	PA6	ADC_IN6	TIM1_BKIN_1
	10		2 0/11			TIM3_CH1	USART4_CK_1
						OPA1_CH1N	
						SPI1_MOSI	
13	17	PA7	I/O/A	-	PA7	ADC_IN7	TIM1_CH1N_1
					TIM3_CH2	USART4_CTS_1	
						OPA2_CH1P	
						ADC_IN8	
14	18	PB0	I/O/A	-	PB0	TIM3_CH3	TIM1_CH2N_1
					•	OPA1_CH1P	TIM3_CH3_2
						USART4_TX	
						ADC_IN9	
15	19	PB1	I/O/A	-	PB1	TIM3_CH4	TIM1_CH3N_1
						OPA1_OUT1	TIM3_CH4_2
						USART4_RX	
-	20	PB2	I/O	FT	PB2/BOOT 1	USART4_CK	
						I2C2_SCL	TIM2 CH3 2
-	21	PB10	I/O/A	FT	PB10	USART3_TX	TIM2_CH3_3
						OPA2_CH0N	11112_0113_3
						I2C2_SDA	TIM2 CH4 2
-	22	PB11	I/O/A	FT	PB11	USART3_RX	TIM2_CH4_2 TIM2_CH4_3
						OPA1_CH0N	11.12_011_3
16	23	V _{SS_1}	Р		Vss_1		
17	24	$V_{\text{DD_IO_1}}$	Р		$V_{DD_IO_1}$		
						SPI2_NSS	
_	25	PB12	I/O/A	FT	PB12	I2C2_SMBA	
	20	1.012	1.0/11		1.012	USART3_CK	
						TIM1_BKIN	
-	26	PB13	I/O/A	FT	PB13	SPI2_SCK	

Pin	No.						
LQFP32	LQFP48/QFN48	Pin name	Pin type (1)	I/O level	Main function (after reset)	Default alternate function	Remapping function
						USART3_CTS	
						TIM1_CH1N	
-	27	PB14	I/O/A	FT	PB14	SPI2_MISO TIM1_CH2N USART3_RTS OPA2_CH0P	
-	28	PB15	I/O/A	FT	PB15	SPI2_MOSI TIM1_CH3N OPA1_CH0P	
18	29	PA8	I/O	FT	PA8	USART1_CK TIM1_CH1 MCO	USART1_CK_1 TIM1_CH1_1
19	30	PA9	I/O	FT	PA9	USART1_TX TIM1_CH2	TIM1_CH2_1
20	31	PA10	I/O	FT	PA10	USART1_RX TIM1_CH3	TIM1_CH3_1
21	32	PA11	I/O/A	FT	PA11	USART1_CTS USBDM CAN1_RX TIM1_CH4	USART1_CTS_1 TIM1_CH4_1
22	33	PA12	I/O/A	FT	PA12	USART1_RTS USBDP CAN1_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1
23	34	PA13	I/O	FT	SWDIO		PA13
-	35	V_{SS_2}	Р	-	V_{SS_2}		
-	36	V_{DD_2}	Р	-	V_{DD_2}		
24	37	PA14	I/O	FT	SWCLK		PA14
25	38	PA15	I/O	FT	PA15		TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 SPI1_NSS USART4_RTS_1
26	39	PB3	I/O	FT	PB3	USART4_CTS	TRACESWO TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK
27	40	PB4	I/O	FT	PB4	USART4_RTS	TIM3_CH1_2 SPI1_MISO

Pin	No.						
LQFP32	LQFP48/QFN48	Pin name	Pin type (1)	I/O level	Main function (after reset)	Default alternate function	Remapping function
							TIM3_CH2_2
28	41	PB5	I/O	-	PB5	I2C1_SMBA	SPI1_MOSI
							USART4_RX_1
						I2C1_SCL	
29	42	PB6	I/O	FT	PB6	TIM4_CH1	USART1_TX_1
						USBFS_DM	
						I2C1_SDA	
30	43	PB7	I/O	FT	PB7	TIM4_CH2	USART1_RX_1
						USBFS_DP	
	44	BOOT0	Ι	-	BOOT0		
31(4)	45	DD 0		БТ	DDO		I2C1_SCL
	45	PB8	I/O/A	FT	PB8	TIM4_CH3	CAN1_RX
	10	DD0	I/O/A	ET	DDO		I2C1_SDA
-	46	ГВА	PB9 I/O/A FT PB9		РВУ	TIM4_CH4	CAN1_TX
32	47	V _{SS_3}	Р	-	V _{SS_3}		
1	48	$V_{DD_IO_3}$	Р	-	V _{DD_IO_3}		

Note 1: Abbreviations in the table

I = *TTL/CMOS Schmitt input;*

O = CMOS tri-state output;

A = analog signal input or output;

P = power;

FT = 5V tolerance;

ANT = *RF* signal input and output (antenna);

Note 2: The PC13, PC14 and PC15 pins are powered by the power switch, and this power switch can only absorb a limited current (3mA). Therefore, when these 3 pins are used as output pins, there are the following restrictions: only one pin can be used as an output at the same time. When used as an output pin, it can only work in 2MHz mode. The maximum drive load is 30pF and cannot be used as a current source (Such as driving LED).

Note 3: These pins are in the main function state when the backup area is powered on for the first time. Even after reset, the state of these pins is controlled by the backup area registers (these registers will not be reset by the main reset system). For specific information on how to control these I/O ports, please refer to the relevant chapters on the battery backup area and BKP register in the CH32xRM.

Note 4: BOOT0 and PB8 pins are combined to seal the chip, it is recommended to connect an external 500K pull-down resistor to ensure that the chip is powered up and stable into the program flash memory bootstrap mode. In addition, this PB8 pin and its multiplexing function only retains the output drive function, all input functions have been disabled.

Note 5: If BOOT0 pin is not pinned out, it will be pulled down to GND internally, and if BOOT1/PB2 pin is not pinned out, it will be pulled down to GND internally. At this time, if you enter the low-power mode to configure the I/O port state, it is recommended that the BOOT1/PB2 pins use the input pull-down mode to prevent additional current generation.

3.3 Pin alternate functions

Note: The pin function descriptions in the table below are for all functions and do not relate to specific model products. Peripheral resources may vary between models, so please check the availability of this function according to the product model resource table before viewing.

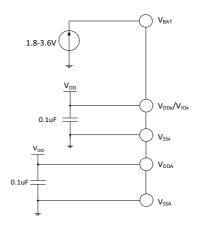
Alternate Pin	ADC	TIM1	TIM2/3/4	UART/USART	USB	SYS	I ² C	SPI	OPA	CAN
PA0	ADC_IN0		TIM2 CH1 TIM2 CH1 ETR_2 TIM2 ETR	USART2_CTS		WKUP				
PA1	ADC_IN1		TIM2_CH2 TIM2_CH2_2	USART2_RTS						
PA2	ADC_IN2		TIM2 CH3 TIM2 CH3 1	USART2_TX					OPA2_OUT0	
PA3	ADC_IN3		TIM2 CH4 TIM2 CH4 1	USART2_RX					OPA1_OUT0	
PA4	ADC_IN4			USART2_CK				SPI1_NSS	OPA2_OUT1	
PA5	ADC_IN5			USART1_CTS_2 USART1_CK_3 USART4_TX_1				SPI1_SCK	OPA2_CH1N	
PA6	ADC_IN6	TIM1_BKIN_1	TIM3_CH1	USART1_TX_3 USART4_CK_1				SPI1_MISO	OPA1_CH1N	
PA7	ADC_IN7	TIM1_CH1N_1	TIM3_CH2	USART1_RX_3 USART4_CTS_1				SPI1_MOSI	OPA2_CH1P	
PA8		TIM1_CH1 TIM1_CH1_1		USARTI CK USARTI ČK 1 USARTI_RX_2		МСО				
PA9		TIM1_CH2 TIM1_CH2_1		USARTI TX USARTI RTS 2						
PA10		TIM1_CH3 TIM1_CH3_1		USART1_RX USART1_CK_2						
PA11		TIM1 CH4 TIM1 CH4 1		USART1 CTS USART1 CTS 1	USBDM					CAN1_RX
PA12		TIM1_ETR TIM1_ETR_1		USART1_RTS USART1_RTS_1	USBDP					CAN1_TX
PA13						SWDIO				
PA14						SWCLK				
PA15			TIM2_CH1_ETR_1 TIM2_CH1_ETR_3	USART4_RTS_1				SPI1_NSS		
PB0	ADC_IN8	TIM1_CH2N_1	TIM3_CH3 TIM3_CH3_2	UART4 TX 1 USART4_TX					OPA1_CH1P	
PB1	ADC_IN9	TIM1_CH3N_1	TIM3_CH4 TIM3_CH4_2	UART4 RX 1 USART4 RX					OPA1_OUT1	
PB2				USART4_CK		BOOT1				
PB3			TIM2_CH2_1 TIM2_CH2_3	USART4_CTS				SPI1_SCK		
PB4			TIM3_CH1_2	USART4_RTS				SPI1_MISO		
PB5			TIM3_CH2_2	USART4_RX_1			I ² C1_SMBA	SPI1_MOSI		
PB6			TIM4_CH1	USART1_TX_1	USBFS_DM		I ² C1_SCL			
PB7			TIM4_CH2	USART1_RX_1	USBFS_DP		I ² C1_SDA			
PB8			TIM4_CH3				I ² C1_SCL			CAN1_RX
PB9			TIM4_CH4				I ² C1_SDA			CAN1_TX

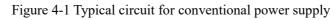
Table 3-2 CH32F203x6/x8 alterna	ate function pin definitions
---------------------------------	------------------------------

V2. 4

PB10		TIM2_CH3_2 TIM2_CH3_3	USART3_TX		I ² C2_SCL		OPA2_CH0N	
PB11		TIM2_CH4_2 TIM2_CH4_3	USART3_RX		I ² C2_SDA		OPA1_CH0N	
PB12	TIM1_BKIN		USART3_CK		I ² C2_SMBA	SPI2_NSS		
PB13	TIM1_CHIN		USART3 CTS USART3 CTS 1			SPI2_SCK		
PB14	TIM1_CH2N		USART3 CTS USART3 CTS 1 USART3 RTS USART3 RTS 1			SPI2_MISO	OPA2_CH0P	
PB15	TIM1_CH3N		USART1_TX_2			SPI2_MOSI	OPA1_CH0P	
PC0								
PC1								
PC2								
PC3								
PC4			USART1_CTS_3					
PC5			USART1_RTS_3					
PC6		TIM3_CH1_3						
PC7		TIM3_CH2_3						
PC8		TIM3_CH3_3						
PC9		TIM3_CH4_3						
PC10			UART4_TX USART3_TX_1					
PC11			UART4 RX USART3_RX_1					
PC12			USART3_CK_1					
PC13				TAMPER-RTC				
PC14				OSC32_IN				
PC15				OSC32_OUT				
PD0				OSC_IN				
PD1				OSC_OUT				
PD2		TIM3 ETR TIM3 ETR 2 TIM3_ETR_3						

Chapter 4 Electrical characteristics


4.1 Test conditions


Unless otherwise specified and marked, all voltages are referenced to V_{SS} .

All minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and clock frequency. Typical values are based on normal temperature (25°C) and $V_{DD} = 3.3V$ environment, which are given only as design guidelines.

The data based on comprehensive evaluation, design simulation or technology characteristics are not tested in production. On the basis of comprehensive evaluation, the minimum and maximum values refer to sample tests. Unless otherwise specified that is tested, the characteristic parameters are guaranteed by comprehensive evaluation or design.

Power supply scheme:

4.2 Absolute maximum ratings

Stresses at or above the absolute maximum ratings listed in the table below may cause permanent damage to the device.

Table 4-1 Absolute maximum ratings

Symbol	Description	Min.	Max.	Unit
T _A	Ambient temperature during operation	-40	85	°C
Ts	Ambient temperature during storage	-40	125	°C
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and V_{DD})	-0.3	4.0	V
V _{IO} -V _{SS}	I/O domain supply voltage	-0.3	4.0	V
V_{IN}	Input voltage on the FT (5V tolerance) pin	V _{SS} -0.3	5.5	V
V IN	Input voltage on other pins	V _{SS} -0.3	V _{DD} +0.3	
$\left \bigtriangleup V_{DD_x} \right $	Variations between different main power supply pins		50	mV
$ \triangle V_{IO_x} $	Variations between different I/O power supply pins		50	mV

$\left \bigtriangleup V_{SS_x} \right $	Variations between different ground pins		50	mV
V	Electrostatic discharge voltage (human body model, non-contact)	4K		V
$V_{ESD(HBM)}$	USB pins (PA11, PA12)	3K		V
Ivdd	Total current into $V_{DD}/V_{DDA}/V_{I'O}$ power lines (source)		150	
I _{Vss}	Total current out of Vss ground lines (sink)		150	
I _{I/O}	Sink current on any I/O and control pin		25	
1ľ/O	Output current on any I/O and control pin		-25	
	Injected current on NRST pin		+/-5	mA
I _{INJ(PIN)}	Injected current on HSE's OSC_IN pin and LSE's OSC_IN pin		+/-5	
	Injected current on other pins		+/-5]
$\sum I_{INJ(PIN)}$	Total injected current on all I/Os and control pins		+/-25	

4.3 Electrical characteristics

4.3.1 Operating conditions

Symbol	Parameter	Condition	Min.	Max.	Unit
F _{HCLK}	Internal AHB clock frequency			144	MHz
F _{PCLK1}	Internal APB1 clock frequency			144	MHz
F _{PCLK2}	Internal APB2 clock frequency			144	MHz
V _{DD}	Standard operating voltage		2.4	3.6	v
V DD	Standard operating voltage	Use USB	3.0	3.6	v
V _{I/O}	Output voltage on most I/O pins	$V_{I\!/\!O}$ cannot be more than V_{DD}	2.4	3.6	V
VDDA	Analog operating voltage (ADC is not used)	V_{DDA} must be the same as $V_{I/O}$, V_{REF^+} cannot be	2.4	3.6	V
V _{DDA}	Analog operating voltage (ADC is used)	higher than V_{DDA} , V_{REF-} is equal to $V_{SS.}$	2.1	5.0	v
$V_{BAT}^{(1)}$	Backup operating voltage	Cannot be more than V_{DD}	1.8	3.6	V
T _A	Ambient temperature		-40	85	°C
TJ	Junction temperature range		-40	85	°C

Table 4-2 General operating conditions

Note: The connection line from the battery to V_{BAT} *should be as short as possible.*

Table 4-3 Power-on and power-down conditions
--

Symbol	Parameter	Condition	Min.	Max.	Unit
	V _{DD} rise time rate		0	8	us/V
t _{VDD}	V _{DD} fall time rate		30	8	us/V

Note: Keep the battery to V_{BAT} *connection as short as possible.*

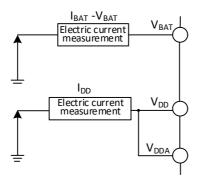
4.3.2 Embedded reset and power control block characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
		PLS[2:0] = 000 (rising edge)		2.39		V
		PLS[2:0] = 000 (falling edge)		2.31		V
		PLS[2:0] = 001 (rising edge)		2.56		V
		PLS[2:0] = 001 (falling edge)		2.48		V
		PLS[2:0] = 010 (rising edge)		2.65		V
		PLS[2:0] = 010 (falling edge)		2.57		V
V _{PVD} ⁽¹⁾		PLS[2:0] = 011 (rising edge)		2.78		V
	Programmable voltage	PLS[2:0] = 011 (falling edge)		2.69		V
	detector level selection	PLS[2:0] = 100 (rising edge)		2.89		V
		PLS[2:0] = 100 (falling edge)		2.81		V
		PLS[2:0] = 101 (rising edge)		3.05		V
		PLS[2:0] = 101 (falling edge)		2.96		V
		PLS[2:0] = 110 (rising edge)		3.17		V
		PLS[2:0] = 110 (falling edge)		3.08		V
		PLS[2:0] = 111 (rising edge)		3.31		V
		PLS[2:0] = 111 (falling edge)		3.21		V
V _{PVDhyst}	PVD hysteresis			0.08		V
V _{POR/PDR}	Power-on/power-down	Rising edge	1.9	2.2	2.4	V
• POR/PDR	reset threshold	Falling edge	1.9	2.2	2.4	V
V _{PDRhyst}	PDR hysteresis			20		mV
thermony of a	Power on reset		24	28	30	mS
t _{rsttempo}	Other resets		8	10	30	IIIS

Table 4-4 Reset and voltage monitor (For PDR, select high threshold gear)

Note: 1. Normal temperature test value.

4.3.3 Embedded reference voltage


Table 4-5 Embedded reference voltage

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{REFINT}	Internal reference voltage	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1.17	1.2	1.23	V
$T_{S_vrefint}$	ADC sampling time when reading the internal				17.1	us
	reference voltage					

4.3.4 Supply current characteristics

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include operating voltage, ambient temperature, I/O pin load, the software configuration of the product, the operating frequency, flip rate of the I/O pin, the location of the program in memory and the executed code, etc. The current consumption measurement method is as follows:

Figure 4-2 Current consumption measurement

The microcontroller is in the following conditions:

Under normal temperature conditions and when $V_{DD} = 3.3V$, all I/O ports are configured with pull-up inputs, only one of HSE and HIS is enabled, HSE=8M, HIS=8M (calibrated), $F_{PLCK1}=F_{HCLK}/2$, $F_{PLCK2}=F_{HCLK}$, PLL is enabled when FHCLK>8MHz. Enable or disable the power consumption of all peripheral clocks.

		Condition		Ту		
Symbol	Parameter			All peripherals enabled	All peripherals disabled ⁽²⁾	Unit
	Supply	External clock	$F_{HCLK} = 144MHz$ $F_{HCLK} = 72MHz$ $F_{HCLK} = 48MHz$ $F_{HCLK} = 36MHz$ $F_{HCLK} = 24MHz$ $F_{HCLK} = 16MHz$	14.76 7.69 5.34 4.74 3.16 2.45	10.57 5.64 4.0 3.6 2.42 2.0	
			$F_{HCLK} = 8MHz$ $F_{HCLK} = 4MHz$ $F_{HCLK} = 500KHz$	1.33 0.96 0.63	1.2 0.83 0.6	mA
I _{DD} ⁽¹⁾	current in Run mode	Runs on the high-speed internal RC oscillator (HSI). Uses AHB prescaler to reduce the frequency.	$\begin{split} F_{HCLK} &= 144 MHz \\ F_{HCLK} &= 72 MHz \\ F_{HCLK} &= 48 MHz \\ F_{HCLK} &= 36 MHz \\ F_{HCLK} &= 24 MHz \\ F_{HCLK} &= 16 MHz \\ F_{HCLK} &= 8 MHz \\ F_{HCLK} &= 4 MHz \\ F_{HCLK} &= 500 kHz \end{split}$	14.38 7.32 5.0 4.1 2.67 2.0 1.0 0.64 0.32	10.1 5.19 3.57 2.86 2.0 1.5 0.8 0.54 0.3	mA

Table 4-6 Typical current consumption in Run mode, the data processing code runs from the internal Flash

Note: 1. The above are measured parameters.

2. During the test, the clocks of USART1 and GPIOA are not disabled when all peripheral clocks are disabled.

			SRAM			
				Ту		
Symbol	Parameter	Condit	tion	All peripherals enabled	All peripherals disabled ⁽²⁾	Unit
			$F_{HCLK} = 144 MHz$	7.47	3.28	
			$F_{HCLK} = 72 MHz$	4.04	1.94	
			$F_{HCLK} = 48 MHz$	2.9	1.52	
			$F_{HCLK} = 36 MHz$	2.9	1.72	
	Supply	Sleep mode (In this	$F_{HCLK} = 24 MHz$	1.93	1.1	
	current in		$F_{HCLK} = 16 MHz$	1.64	1.1	
	Sleep mode		$F_{HCLK} = 8MHz$	0.93	0.7	
	(In this		$F_{HCLK} = 4MHz$	1.0	1.0	
$I_{DD}^{(1)}$	case,		$F_{HCLK} = 500 kHz$	0.86	0.86	mA
IDD	peripheral		$F_{HCLK} = 144 MHz$	7.16	2.96	mA
	power		$F_{HCLK} = 72 MHz$	3.72	1.62	
	supply and	Runs on the	$F_{HCLK} = 48 MHz$	2.6	1.2	
	clock are	high-speed internal	$F_{HCLK} = 36 MHz$	2.2	1.1	
	maintained)	RC oscillator (HSI).	$F_{HCLK} = 24 MHz$	1.48	0.78	
		Uses AHB prescaler to reduce the	$F_{HCLK} = 16MHz$	1.18	0.69	
			$F_{HCLK} = 8MHz$	0.61	0.5	
		frequency.	$F_{HCLK} = 4MHz$	0.51	0.45	
			$F_{\rm HCLK} = 500 \rm kHz$	0.33	0.33	

Table 4-7 Typical current consumption in Sleep mode, data processing code runs from internal Flash or

Note: 1. The above are measured parameters.

2. During the test, the clocks of USART1, GPIOA and power module are not disabled.

Table 4-8 Typical current consumption in Stop and Standby mode

Symbol	Parameter	Condition	Тур.	Unit
		Voltage regulator in Run mode, low-speed and high-speed internal RC oscillators and external oscillators off (no independent watchdog)	60	
I _{DD}	Supply current in Stop mode	Voltage regulator in low-power mode, low-speed and high-speed internal RC oscillators and external oscillators off (no independent watchdog, PVD off), RAM enters low-power mode	10	uA
	Supply current in Standby	Low-speed internal RC oscillator and independent watchdog on, all RAM not powered	1.3	
	mode	Low-speed internal RC oscillator on, independent watchdog off, all RAM not powered	1.3	

		LSI/LSE/RTC/IWDG off, 2K_RAM powered and in low-power mode	1.3	
		LSI/LSE/RTC/IWDG off, all RAM not powered	0.5	
I _{DD_VBAT}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Low-speed external oscillator and RTC on	1.3	

Note: The above are measured parameters.

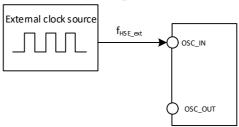

4.3.5 External clock source characteristics

 Table 4-9 From external high-speed clock

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{HSE_ext}	External clock frequency		3	8	25	MHz
$V_{\rm HSEH}^{(1)}$	OSC_IN input pin high level voltage		0.8V _{I/O}		V _{I/O}	V
V _{HSEL} ⁽¹⁾	OSC_IN input pin low-level voltage		0		0.2V _{I/O}	V
C _{in(HSE)}	OSC_IN input capacitance			5		pF
DuCy _(HSE)	Duty cycle			50		%
IL	OSC_IN input leakage current				±1	uA

Note: 1. Failure to meet this condition may cause level recognition error.

Figure 4-3 External high-frequency clock source circuit

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F_{LSE_ext}	User external clock frequency			32.768	1000	KHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.8 \mathrm{V_{DD}}$		V _{DD}	V
V _{LSEL}	OSC32_IN input pin low voltage		0		$0.2V_{DD}$	V
Cin(LSE)	OSC32_IN input capacitance			5		pF
DuCy _(LSE)	Duty cycle			50		%
$I_{\rm L}$	OSC32_IN input leakage current				±1	uA

Figure 4-4 External low-frequency clock source circuit

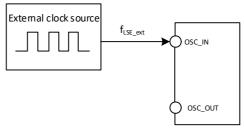


Table 4-11 High-speed external clock generated from a crystal/ceramic resonator

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{OSC_IN}	Resonator frequency		3	8	25	MHz
$R_{\rm F}$	Feedback resistance			250		kΩ
С	Recommended load capacitance and corresponding crystal series impedance R _S	$R_{S}=60\Omega^{(1)}$		20		pF
I ₂	HSE drive current	$V_{DD} = 3.3V$, 20p load		0.53		mA
g _m	Oscillator transconductance	Startup		17.5		mA/V
t _{SU(HSE)}	Startup time	V_{DD} is stable, 8M crystal		2.5		ms

Note 1: It is recommended that the ESR of 25M crystal should not exceed 60 Ω , and it can be relaxed if it is lower than 25M.

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, and in general $C_{L1}=C_{L2}$.

Figure 4-5 Typical circuit of external 8M crystal

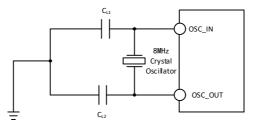
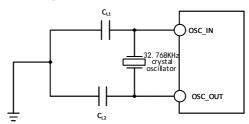


Table 4-12 Low-speed external clock generated by generated from a crystal/ceramic resonator


(f(LSE)=32.768kHz)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _F	Feedback resistance			5		MΩ
С	Recommended load capacitance and corresponding crystal serial impedance R _s				15	pF
i2	LSE drive current	$V_{DD} = 3.3 V$		0.35		uA
g _m	Oscillator transconductance	Startup		25.3		uA/V
$t_{SU(LSE)}$	Startup time	V _{DD} is stable		800		mS

Circuit reference design and requirements:

The load capacitance of the crystal is subject to the recommendation of the crystal manufacturer, and in general $C_{L1}=C_{L2}$, optionally around 12pF.

Figure 4-6 Typical circuit of external 32.768K crystal

Note: The load capacitance C_L is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$. C_{stray} is the capacitance of the pin and the PCB board or PCB-related capacitance. Its typical value is between 2pF and 7pF.

4.3.6 Internal clock source characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{HSI}	Frequency (after calibration)			8		MHz
DuCy _{HSI}	Duty cycle		45	50	55	%
ACC _{HSI}	Accuracy of HSI oscillator (after	$TA = 0^{\circ}C \sim 70^{\circ}C$	-1.0		1.6	%
ACCHSI	calibration)	$TA = -40^{\circ}C \sim 85^{\circ}C$	-2.2		2.2	%
t _{SU(HSI)}	HSI oscillator startup stabilization time			10		us
I _{DD(HSI)}	HSI oscillator power consumption		120	180	270	uA

Table 4-13 Internal high-speed (HSI) RC oscillator characteristics

Table 4-14 Internal low-speed (LSI) RC oscillator characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{LSI}	Frequency		25	39	60	kHz
DuCy _{LSI}	Duty cycle		45	50	55	%
t _{su(lsi)}	LSI oscillator startup stabilization time			100		us
I _{DD(LSI)}	LSI oscillator power consumption			0.6		uA

4.3.7 PLL characteristics

Table 4-15 PLL characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Б	PLL input clock		3	8	25	MHz
$F_{PLL_{IN}}$	PLL input clock duty cycle		40		60	%
F _{PLL_OUT}	PLL multiplier output clock		18		144 ⁽¹⁾	MHz
t _{LOCK}	PLL lock time				200	us

Note 1: The frequency multiplier must be selected to meet the PLL output frequency range.

4.3.8 Wakeup time from low-power mode

Symbol	Parameter	Condition	Тур.	Unit
t _{wusleep}	Wakeup from Sleep mode	Wake up using HSI RC clock	2.4	us
	Wakeup from Stop mode (voltage regulator is in Run mode)	Wake on HSI RC clock	23.1	us
t _{wustop}	Wakeup from Stop mode (voltage regulator is in low-power mode)	Voltage regulator wakeup time from low-power mode + HSI RC clock wake up	76.7	us
twustdby	Wakeup from Standby mode	LDO stabilization time + HSI RC clock wake up + code load time ⁽²⁾ (take 128K as example)	8.9	ms

Table 4-16 Wakeup time from low-power mode⁽¹⁾

Note: 1. The above parameters are measured parameters.

2. The code load time is calculated based on the current zero-wait area capacity configured by the chip and the size of the loading configuration clock.

4.3.9 Memory characteristics

Table 4-17 Flash memory characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fprog	Programming frequency ⁽¹⁾	$T_A = -40^{\circ}C \sim 85^{\circ}C$			60	MHz
t _{prog_page}	Page (256 bytes) programming time	$T_A = -40^{\circ}C \sim 85^{\circ}C$		2		ms
t _{erase_page}	Page (256 bytes) erase time	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16		ms
t _{erase_sec}	Sector (4K bytes) erase time	$T_A = -40^{\circ}C \sim 85^{\circ}C$		16		ms
V _{prog}	Programming voltage		2.4		3.6	V

Note: 1. For the programming frequency of flash, read operation, program operation and erase operation are included. The clock is from HCLK.

Table 4-18 Flash memory endurance and data retention

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
N _{END}	Endurance	$T_A = 25^{\circ}C$	10K	80K ⁽¹⁾		times
t _{RET}	Data retention		20			year

Note: The endurance parameter is actual measured, which is not guaranteed.

4.3.10 I/O port characteristics

Table 4-19 General-purpose I/O static characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	Standard I/O pin, input high level voltage		0.41*(V _{DD} - 1.8)+1.3		V _{DD} +0.3	V
V _{IH}	FT I/O pin, input high level voltage		0.42*(V _{DD} - 1.8)+1		5.5	V

V _{IL}	Standard I/O pin, input low-level voltage		-0.3		0.28*(V _{DD} - 1.8)+0.6	V
V IL	FT I/O pin, input low-level voltage		-0.3		0.32*(V _{DD} - 1.8)+0.55	V
V	Standard I/O pin Schmitt trigger voltage hysteresis	ſ	150			mV
V_{hys}	FT I/O pin Schmitt trigger voltage hysteresis		90			шv
т		Standard I/O port			1	
I _{lkg}	Input leakage current	FT I/O port			3	uA
R _{PU}	Weak pull-up equivalent resistance		30	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistance		30	40	55	kΩ
C _{IO}	I/O pin capacitance			5		pF

Output drive current characteristics

GPIO (General-Purpose Input/Output Port) can sink or output up to ± 8 mA current, and sink or output ± 20 mA current (not strictly to V_{OL}/V_{OH}). In user applications, the total driving current of all I/O pins cannot exceed the absolute maximum ratings given in Section 4.2:

Symbol	Parameter	Condition	Min.	Max.	Unit
Vol	Output low level when 8 pins are sunk	TTL port, $I_{IO} = +8mA$		0.4	V
V _{OH}	Output high level when 8 pins are sourced	$2.7V \le V_{DD} \le 3.6V$	V _{DD} -0.4		v
V _{OL}	Output low level when 8 pins are sunk	CMOS port, $I_{IO} = +8mA$		0.4	V
V _{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 3.6V$	2.3		v
V _{OL}	Output low level when 8 pins are sunk	$I_{IO} = +20 \text{mA}$		1.3	V
V _{OH}	Output high level when 8 pins are sourced	$2.7V < V_{DD} < 3.6V$	V _{DD} -1.3		v
V _{OL}	Output low level when 8 pins are sunk	$I_{IO} = +6mA$		0.4	V
V _{OH}	Output high level when 8 pins are sourced	$2.4V < V_{DD} < 2.7V$	V _{DD} -1.3		v

Table 4-20 Output voltage characteristics

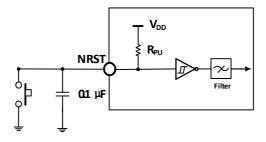
Note: In the above conditions, if multiple I/O pins are driven at the same time, the total current cannot exceed the absolute maximum ratings given in Table 4.2. In addition, when multiple I/O pins are driven at the same time, the current on the power/ground point is very large, which will cause the voltage drop to make the internal I/O voltage not reach the power supply voltage in the table, resulting in the drive current being less than the nominal value.

MODEx[1:0] configuration	Symbol	Parameter	Condition	Min.	Max.	Unit		
10	Fmax(I/O)out	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		2	MHz		
(2MHz)	t _{f(I/O)out}	Output high to low fall time	CI = 50 = EV = -2.7.2.6V		125	ns		
(ZMHZ)	t _{r(I/O)out}	Output low to high rise time	CL=50pF,V _{DD} =2.7-3.6V		125	ns		
01	F _{max(I/O)out}	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		10	MHz		
(10MHz)	t _{f(I/O)out}	Output high to low fall time	CL=50pF,V _{DD} =2.7-3.6V		25	ns		

Table 4-21 Input/output AC characteristics

	t _{r(I/O)out}	Output low to high rise time			25	ns
	Б	Marine fragmanar	CL=30pF,V _{DD} =2.7-3.6V		50	MHz
	F _{max(I/O)out}	Maximum frequency	CL=50pF,V _{DD} =2.7-3.6V		30	MHz
11	$t_{f(I/O)out}$ Output high to low fall time	Output high to low fall time	CL=30pF,V _{DD} =2.7-3.6V		20	ns
(50MHz)		Output high to low fall time	CL=50pF,V _{DD} =2.7-3.6V		5	ns
	$t_{r(I/O)out}$ Output low to high rise time	CL=30pF,V _{DD} =2.7-3.6V		8	ns	
		CL=50pF,V _{DD} =2.7-3.6V		12	ns	
		The EXTI controller detects				
	t_{EXTIpw}	the pulse width of the		10		ns
	external signal					

4.3.11 NRST pin characteristics

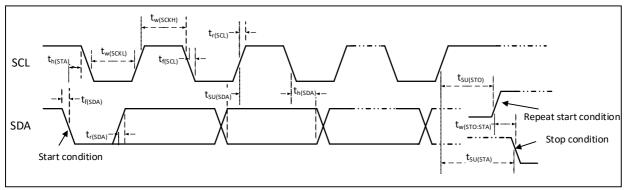

Table 4-22 External reset pin characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low-level voltage		-0.3		0.28*(V _{DD} -1.8)+0.6	V
V _{IH(NRST)}	NRST input high-level voltage		0.41*(V _{DD} -1.8)+1.3		V _{DD} +0.3	V
V _{hys(NRST)}	NRST Schmitt Trigger voltage hysteresis		150			mV
R _{PU} ⁽¹⁾	Weak pull-up equivalent resistance		30	40	50	kΩ
V _{F(NRST)}	NRST input filtered pulse width				100	ns
V _{NF(NRST)}	NRST input not filtered pulse width		300			ns

Note: 1. The pull-up resistor is a real resistor in series with a switchable PMOS implementation. The resistance of this PMOS/NMOS switch is very small (approximately 10%).

Circuit reference design and requirements:

Figure 4-7 Typical circuit of external reset pin



4.3.12 TIM timer characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit				
+	Timer reference clock		1		t _{TIMxCLK}				
t _{res(TIM)}	Timer reference clock	$f_{TIMxCLK} = 72MHz$	13.9		ns				
Б	Timer external clock frequency on		0	$f_{TIMxCLK}/2$	MHz				
F_{EXT}	CH1 to CH4	$f_{TIMxCLK} = 72MHz$	0	36	MHz				
R _{esTIM}	Timer resolution			16	Bit				
4	16-bit counter clock cycle when the		1	65536	t _{TIMxCLK}				
tCOUNTER	internal clock is selected	$f_{TIMxCLK} = 72MHz$	0.0139	910	us				
t _{MAX_COUNT}	Maximum possible count			65535	t _{TIMxCLK}				
		$f_{TIMxCLK} = 72MHz$		59.6	S				

4.3.13 I2C interface characteristics

Figure 4-8 I²C bus timing diagram

Symbol	Parameter	Standa	Standard I ² C		Fast I ² C	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{w(SCKL)}	SCL clock low time	4.7		1.2		us
t _{w(SCKH)}	SCL clock high time	4.0		0.6		us
t _{SU(SDA)}	SDA data setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA and SCL rise time		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA and SCL fall time		300			ns
t _{h(STA)}	Start condition hold time	4.0		0.6		us
t _{SU(STA)}	Repeated start condition setup time	4.7		0.6		us
t _{SU(STO)}	Stop condition setup time	4.0		0.6		us
t _{w(STO:STA)}	Time from stop condition to start condition (bus free)	4.7		1.2		us
C _b	Capacitive load for each bus		400		400	pF

Table 4-24 I²C interface characteristics

4.3.14 SPI interface characteristics

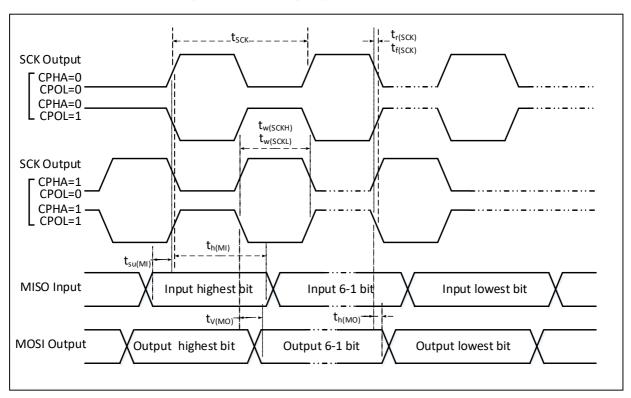
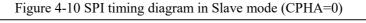
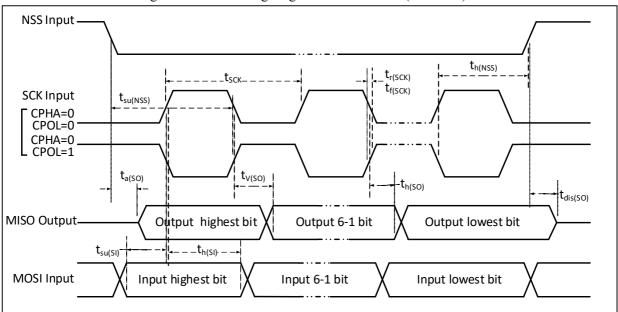




Figure 4-9 SPI timing diagram in Master mode

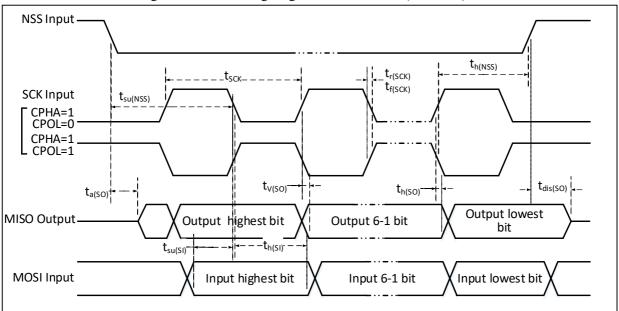


Figure 4-11 SPI timing diagram in Slave mode (CPHA=1)

Symbol	Parameter	Condition	Min.	Max.	Unit			
C //		Master mode		36	MHz			
f_{SCK}/t_{SCK}	SPI clock frequency	Slave mode		36	MHz			
$t_{r(SCK)}/t_{f(SCK)}$	SPI clock rise and fall time	Load capacitance:C = 30pF		20	ns			
t _{SU(NSS)}	NSS setup time	Slave mode	2t _{PCLK}		ns			
t _{h(NSS)}	NSS hold time	Slave mode	2t _{PCLK}		ns			
tw(SCKH)/tw(SCKL)	SCK high and low time	Master mode, $f_{PCLK} = 36MHz$, Prescaler factor = 4	40	60	ns			
t _{SU(MI)}	Dete in met estern times	Master mode	5		ns			
t _{SU(SI)}	Data input setup time	Slave mode	5		ns			
t _{h(MI)}	Dete in met held time	Master mode	5		ns			
t _{h(SI)}	Data input hold time	Slave mode	4		ns			
t _{a(SO)}	Data output access time	Slave mode, $f_{PCLK} = 20MHz$	0	1t _{PCLK}	ns			
t _{dis(SO)}	Data output disable time	Slave mode	0	10	ns			
$t_{\rm V(SO)}$	Determent and it is the	Slave mode (After enable edge)		25	ns			
t _{V(MO)}	Data output valid time	Master mode (After enable edge)		5	ns			
$t_{h(SO)}$	Data autout hald time	Slave mode (After enable edge)	15		ns			
t _{h(MO)}	Data output hold time	Master mode (After enable edge)	0		ns			

Table 4-25 SPI interface characteristics

4.3.15 USB interface characteristics

Table 4-26 USB characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{DD}	USB operating voltage		3.0	3.6	V
V _{SE}	Single-ended receiver	$V_{DD} = 3.3 V$	1.2	1.9	V

	threshold			
V _{OL}	Static output low level		0.3	V
V _{OH}	Static output high level	2.8	3.6	V
$V_{\rm HSSQ}$	High-speedsuppressioninformation detection threshold	100	150	mV
V _{HSDSC}	High-speed disconnection detection threshold	500	625	mV
V _{HSOI}	High-speed idle level	-10	10	mV
V _{HSOH}	High-speed data high level	360	440	mV
V _{HSOL}	High-speed data low level	-10	10	mV

4.3.16 12- bit ADC characteristics

Table 4-27 ADC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DDA}	Supply voltage		2.4		3.6	V
V _{REF+}	Positive reference voltage	V_{REF^+} cannot be more than V_{DDA}	2.4		V _{DDA}	V
I _{VREF}	Reference current			160	220	uA
I _{DDA}	Supply current			480	530	uA
\mathbf{f}_{ADC}	ADC clock frequency				14	MHz
$\mathbf{f}_{\mathbf{S}}$	Sampling rate		0.05		1	MHz
f _{TRIG}	External trigger frequency				16	$1/f_{ADC}$
V _{AIN}	Conversion voltage range		0		V _{REF+}	V
R _{AIN}	External input impedance				50	kΩ
R _{ADC}	Sampling switch resistance			0.6	1	kΩ
C _{ADC}	Internal sample and hold capacitor			8		pF
t_{CAL}	Calibration time			100		
t_{Iat}	Injected trigger conversion latency				2	$1/f_{ADC}$
t _{Iatr}	Regular trigger conversion latency				2	$1/f_{ADC}$
ts	Sampling time		1.5		239.5	$1/f_{ADC}$
t _{STAB}	Power-on time				1	us
t _{CONV}	Total conversion time (including sampling time)		14		252	$1/f_{ADC}$

Note: Above parameters are guaranteed by design.

Formula: Maximum RAIN

$$R_{AIN} < \frac{Ts}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

The above formula is used to determine the maximum external impedance so that the error can be less than 1/4 LSB. Where N=12 (representing 12-bit resolution).

T _s (cycle)	t _s (us)	Maximum $R_{AIN}(k\Omega)$
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	Invalid
239.5	17.1	Invalid

Table 4-28 Maximum RAIN when $f_{ADC} = 14$ MHz

Table 4-29 ADC error

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
EO	Offset error	$f_{PCLK2} = 56 \text{ MHz},$		±2		
ED	Differential nonlinearity error	$f_{ADC} = 14 \text{ MHz},$		±0.5	±3	LSB
EL	Integral nonlinearity error	$R_{AIN} < 10 \text{ k}\Omega,$ $V_{DDA} = 3.3 \text{ V}$		±1	±4	LSB

 C_p represents the parasitic capacitance on the PCB and the pad (about 5pF), which may be related to the quality of the pad and PCB layout. A larger C_p value will reduce the conversion accuracy, the solution is to reduce the f_{ADC} value.

Figure 4-12 ADC typical connection diagram

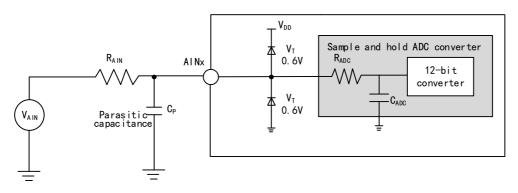
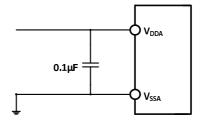



Figure 4-13 Analog power supply and decoupling circuit reference

4.3.17 Temperature sensor characteristics

Table 4-30 Temperature sensor characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{TS}	Measurement range of temperature sensor		-40		85	°C
A _{TSC}	Measurement range of temperature sensor after software calibration			±12		°C
Avg_Slope	Average slope (negative temperature coefficient)		3.8	4.3	4.8	mV/°C
V ₂₅	Voltage at 25°C		1.34	1.40	1.46	V
T_{S_temp}	ADC sampling time when reading temperature	$f_{ADC} = 14 MHz$			17.1	us

4.3.18 OPA characteristics

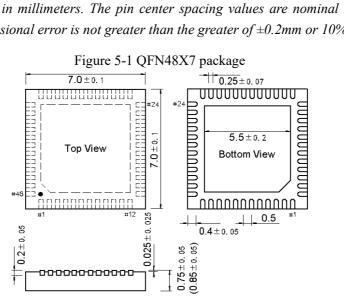
Table 4-31 OPA characteristics

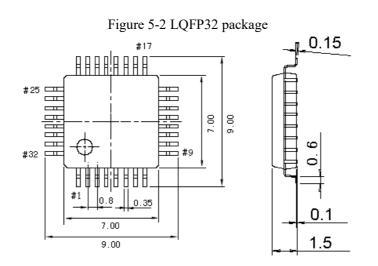
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
V _{DDA}	Supply voltage		2.4	3.3	3.6	V	
C _{MIR}	Common mode input voltage		0		V _{DDA} -0.9	V	
VIOFFSET	Input offset voltage			2.5	8	mV	
I _{LOAD}	Drive current				600	uA	
Iddopamp	Current consumption	No load, static mode		195		uA	
C _{MRR} ⁽¹⁾	Common mode rejection ratio	@1kHz		96		dB	
P _{SRR} ⁽¹⁾	Power supply rejection ratio	@1kHz		86		dB	
$A_V^{(1)}$	Open loop gain	C _{LOAD} =5pF		136		dB	
G _{BW} ⁽¹⁾	Unit gain bandwidth	C _{LOAD} =5pF		19		MHz	
$P_{M}^{(1)}$	Phase margin	C _{LOAD} =5pF		93			
$S_R^{(1)}$	Slew rate limited	C _{LOAD} =5pF		8		V/us	
t _{WAKUP} ⁽¹⁾	Setup time from shutdown to wake up, 0.1%	Input V _{DDA} /2, C _{LOAD} =5pF,R _{LOAD} =4kΩ			368	ns	
RLOAD	Resistive load		4			kΩ	
CLOAD	Capacitive load				50	pF	
V _{OHSAT} ⁽²⁾	High saturation output voltage	$\begin{array}{ll} R_{LOAD}{=}4k\Omega, & \mbox{input} \\ V_{DDA} & & \\ R_{LOAD}{=}20k\Omega, & \mbox{input} \end{array}$	V _{DDA} -45			mV	
		VDDA	V _{DDA} -10				
V _{OLSAT} ⁽²⁾	Low saturation output voltage	$R_{LOAD}=4k\Omega$, input 0			0.5	mV	
· OLSAI		$R_{LOAD}=20k\Omega$, input 0			0.5	·	
EN ⁽¹⁾	Equivalent input voltage noise	R _{LOAD} =4kΩ,@1kHz		83		nv	
1/11	Equivalent input voltage hoise	$R_{LOAD}=4k\Omega,@10kHz$		42		\sqrt{Hz}	

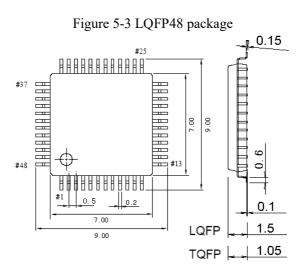
Note: 1. Design parameters are guaranteed.

2. The load current limits the saturated output voltage.

Chapter 5 Package and ordering information


Packages


Part No.	Package	Body size	Lead pitch	Description	Packing type
CH32F203K8T6	LQFP32	7*7mm	0.8mm	LQFP32M (7*7) patch	Tray
CH32F203C6T6	LQFP48	7*7mm	0.5mm	LQFP48M (7*7) patch	Tray
CH32F203C8T6	LQFP48	7*7mm	0.5mm	LQFP48M (7*7) patch	Tray
CH32F203C8U6	QFN48X7	7*7mm	0.5mm	Quad no-lead 48-pin	Tray


Note: 1. The packing type of QFP/QFN is usually tray. Please confirm with the packaging factory for specific part number.

2. Size of tray: The size of tray is generally a uniform size (322.6*135.9*7.62). There are differences in the size of the restriction holes for different package types, and there are differences between different packaging factories for tubes, please confirm with the manufacturer for details.

Note: All dimensions are in millimeters. The pin center spacing values are nominal values, with no error. Other than that, the dimensional error is not greater than the greater of ± 0.2 mm or 10%.

Series product naming rules

	6						
Device family							
F = ARM-based							
V = QingKe RISC-V-based							
Product type							
0 = QingKe V2 core							
1 = M3/QingKe V3A core, clock speed @72M							
$2 = M3/QingKe V4B_C \text{ core, clock speed } @144M$							
3 = QingKe V4F floating-point core, clock speed @144M							
Device subfamily							
03 = General-purpose							
05 = Connectivity (USB high-speed, SDIO, dual CAN)							
07 = Interconnectivity (USB high-speed, dual CAN, Ethernet, DVP, SDIO, FSMC)							
08 = Wireless (BLE5.3, CAN, USB, Ethernet)							
Pin count							
J = 8 pins $A = 16 pins$ $F = 20 pins$							
G = 28 pins $K = 32 pins$ $T = 36 pins$							
C = 48 pins $R = 64 pins$ $W = 68 pins$							
V = 100 pins $Z = 144 pins$							
Flash memory size							
4 = 16 Kbytes of Flash memory							
6 = 32 Kbytes of Flash memory							
8 = 64 Kbytes of Flash memory							
B = 128 Kbytes of Flash memory							
C = 256 Kbytes of Flash memory							
Package							
T = LQFP							
U = QFN $R = QSOP$							
P = TSSOP $M = SOP$							
Temperature range							
$6 = -40^{\circ}C \sim 85^{\circ}C$ (industrial-grade)							

 $7 = -40^{\circ}C \sim 105^{\circ}C$ (automotive-grade 2)

 $3 = -40^{\circ}C \sim 125^{\circ}C$ (automotive-grade 1)

 $D = -40^{\circ}C \sim 150^{\circ}C$ (automotive-grade 0)